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Abstract — During the last years, monolithic integrated circuits have

been used more and more in microwave techniques. As a result, the

metallization thickness of the planar circuits became of the order of the

skkr depth even at very high frequencies, so that the approximate methods

for loss calculations used until recently must be revised. In this paper, a

variational formulation of the skin-effect problem for calculating the losses

as well as the inner inductances of components in such circuits will be

described, and the first nnmerical resnfts of the method will be discussed.

I. INTRODUCTION

I N PLANAR MICROWAVE integrated circuits, the used

line structures are striplines of rectangular cross section.

The thickness of the metallization is between 5 and 20 pm

in hybrid microwave integrated circuits and between 1 and

3 pm in monolithic microwave integrated circuits. Two

different cases are interesting in real monolithic microwave

integrated circuits

1) the lumped-element circuit, where the losses of a

single conducting strip of rectangular cross section

with no metallization on the backside of the sub-

strate material must be calculated, and

2) the microstrip circuit, where the losses in the strip as

well as in the ground plane must be calculated.

If it is assumed that the conductivity of the conductor

material is in the order of 4.107 S/m, the skin depth of

this material is about 3 pm at a frequency of 1 GHz and

about 0.6 pm at a frequency of 20 GHz. Assuming that the

height of the strips is between 1 and 3 pm, the current

distribution is nearly constant over the cross section at the

lower frequency (1 GHz), whereas, at 20 GHz, the skin-

effect already has an important influence on the current

distribution and thereby on the resistance of the strip.

‘ “,~his is the reason why in this paper the fundamental

problem of the skin-effect in a conductor of rectangular

cross section is considered again. Up to now, the loss

calculations for high frequencies have been primarily based

on the essential paper by Wheeler [1] in which an ap-

proximate method for calculating the frequency-dependent

alternating current resistance of a conductor with dimen-

sions large compared to the skin depth has been described

(incremental inductance rule). In the case of thin-film lines

as they are used in hybrid microwave integrated circuits,

the requirements of Wheeler’s theory are approximately
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fulfilled even at lower microwave frequencies because the

metallization thickness of these circuits is between 5 and 10

pm. As has been shown above, in the case of monolithic

microwave integrated circuits, and especially at lower fre-

quencies, Wheeler’s theory no longer can be applied be-

cause the skin depth is in the order of the metallization

thickness.

In this first fundamental investigation, only the skin-

effect in a single strip of rectangular cross section is

considered. Using the results of this theory, the losses of

lumped elements can be calculated directly. In addition, if

the theory shall be applied to rnicrostrip circuits, the mag-

netic-field distribution on the surface of the conducting

areas or on a closed surface including the conducting

structures must be known from other numerical methods.

Investigations for this case will be published in the future.

The problem of the skin-effect in rectangular conductors

is a very old one; one of the first papers dealing with the

subject is that of Press (1916) [3]. In 1929, Cockcroft [4]

published an approximate formula for the alternating cur-

rent resistance of a rectangular conductor at high frequen-

cies which he derived from an electrostatic analog of the

problem. The requirements for the application of this

formula are nearly the same as those for Wheeler’s theory,

i.e., both theories are applicable in a frequency range where

the alternating current resistance is nearly proportional to

the square-root of the frequency. In 1937, Haefner [5]

published measured results for the frequency-dependent

resistance of a rectangular conductor, which up to now are

the only available measurements for resistances of different

shape ratios and frequencies.

Already by 1927, Schwenkhagen [6] published an exten-

sive investigation on a quasi-numerical method for the

problem. This investigation was carried out for application

in electrical power transmission, but it describes the same

problems as those occurring in microwave integrated cir-
cuits today, especially the problem of the skin-effect resis-

tance of coupled lines. During the following years, there

had been a number of publications on numerical methods

for calculating the alternating current resistance of a rect-

angular conductor [7]–[15]. The last publication was pub-

lished in 1983, which showed that apparently the problem

up until then had not been solved satisfactorily. In all

papers, only few results of the numerical methods are

presented; only Silvester [10] and Preis [14] give some

detailed information on the frequency-dependent resis-

tance; especially, all authors only give results for frequen-
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6%” Under these conditions, Maxwell’s equations describing

the problem can be written as

L~ where SO is an impressed current density, which is assumed

Q=rl.+f-hz x to be homogeneously distributed over the cross section of

Fig. 1. The general cylindrical boundary-value problem.
the area O.. & at the same time is the current density

which will occur in the conducting area in the case a ~ O,

The special form of (1) results from a Lorentz-gauge of the
ties which are relatively small, and the frequencies which vector potential A+

are interesting for microwave applications (i.e., normalized

frequencies p between p = 2 and p = 30; for the definition
Using (1) and (2), it can easily be shown that the

governing equation for the vector potential in the whole
of p, seebelow) are not investigated. The highest value field domain Q = fl~ + fl~ is

considered in the publications is p =6. Additionally, little

information is available in publications on the numerical rOtrOt A“+ jtipKA”= I&. in Q. (3)

effort, which in most cases is considered to be high. This is the operator equation
In this paper, therefore, a numerical method based on a

variational formulation of the problem will be described. u“= pi. (4)

In this first approach, only the single conducting strip of with the operator

rectangular cross section without any substrate material

and ground plane will be considered, ‘i.e., the application of
L = rotrot + jupK (5)

the method for calculating the losses of the microstrip lines which will be used in the variational formulation of the

will not be discussed. Already by 1978, Hammond [16], problem later.

[17] remarked that the variational methods principally If the different field regions Q. and OA are co~sider~d

should be applicable to eddy current problems, and he separately, the following equations are valid for A and B:

verified this method for one-dimensional problems. Chun

Hsiung Chen et al., in 1980, published a general investiga- rotrot A“+ jq.mA”= I.&

}
in ax (6)

tion on the application of variational methods in non-self- rotrot~ + jupKli = O

adjoint electromagnetic problems [18], and Sarkar [19], in And

1984, gave interesting information on this subject and the

inherent numerical difficulties. The author’s paper is based rotrotA-= O in fii?~. (7)

on the referenced publications and tries to f~ther develop The solution of (4) or (6) and (7) needs the definition of the

the theoretical background and its application. above-mentioned boundary condition on the curve C, which

is the assumed outer boundary of the total field region. In

II. VARIATIONAL APPROACH FOR THE SKIN-EFFECT a first case, a homogeneous Dirichlet boundary condition

Because, in this paper, the investigation will be restricted
(Az = O), and in a second case, an inhomogeneous

to a single conducting strip of rectangular cross section, the
Neumann condition ( 0A2/ 13n= B,(C)) will be assumed.

quasi-stationary electromagnetic boundary-value problem
The first boundary condition A== O implies that th~ exte-

shown in Fig. 1 is considered; it consists of a cylindrical
rior curve C is a field-line of the magnetic field B. The

arrangement with homogeneous cross section along the
second boundary condition can be applied if a meaningful

cylinder axis. The field domain !J is subdivided into two
assumption on the value of the tangential magnetic

sub-areas: fl. is a domain described by a conductivity K
flux-density B,(C) on the curve C can be made.

and a permeability p = p ~, whereas ~~ is air-filled, i.e., the
The operator L given in (5) is non-self-adjoint

material parameter of this domain is p = p ~. All field (ti, Li7) # (Lii, 5) (8)

regions are assumed to be homogeneous, i.e., all material where ii, 0 are vectors in the domain of the operator L.
parameters shall be constant in the sub-areas. The boundary The scalar product in (8) is defined as

curve Cc surrounds the conducting area, and C is the

boundary curve of the total field region il. Two different (2, d)= ~~ii*3dQ (9)
kinds of boundary conditions on the exterior curve C will Q
be discussed later in this paper. where Q is the considered field region.

It is assumed that the electromagnetic field is indepen- As it is known from [18] in the case of th~ non-self-
dent of the z-coordinate (Fig. 1, cylinder axis); a current adjoint problem given in (4), an adjoint operator La can be

density in- the conducting area shall exhibit only ~ Z- defined so that

component. Therefore, the adjoint mag~etic field B is

purely transversal+ and the electric field E as well as the (Z, Li7) = (L%, i?). (lo)

vector potential A have only a z-component. The form of the adjoint operator La and the general
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To find a solution for the vector potentials A- and A+=,use
I 1 I

h. il is made of a series expansion -
—

Fig. 2. The conducting cylinder of rectangular cross section (region Q.,

boundary C.) and the exterior boundary C.

procedure of solving the skin-effect problem of the rectan.

gular conductor shall be explained for a special example in

the next chapter.

III. THE SKIN-EFFECT OF A CONDUCTOR WITH

RECTANGULAR CROSS SECTION

A. The Variational Method Using One Vector Potential

In this section, the problem in Fig. 2 shall be analyzed

using the described method. On the exterior boundary C,

the homogeneous Dirichlet condition (Az = O) shall be

assumed. The operator equation (4) (with the operator

given in (5)), which shall be solved, is valid in the total field

region L? surrounded by C. The adjoint operator La can be

derived in this case as

La= L*= rotrot – jcqm (11)

where L* means the conjugate complex of L (see also

[17]). Additionally, the adjoint vector potential ~, which

fulfills

LaA”” = P~o (12)

(where the im~res~d adjoint current density ~~ can be

chosen to be S; = SO without any restrictions) mu~t s-atisfy

the same homogeneous boundary conditions as A, so that

the “surface integrals” appearing when Green’s formula is

applied to (ii, ~v), and using (11)

(d, Li7) = (L”ti, ti)+[ti Xrotii*, il]-[1” Xrotti, ii]

(13)

automatically become zero. The surface integrals in (13)

are defined as

+([i7Xrotil*, Z] = iYXrot2*)-zds. (14)

In addition, the surface integr~ls must be taken into account

if not the essential boundary condition AZ = O, but the

natural conditions, e.g., the inhomogeneous Neumann con-

dition, are considered.

Following [20] and [18] in the case of the homoge~eous

boundary condition, a solution for the field vectors A and

A+” can be derived from the functional

F(~, A“”) = (~, M“) – (p& ~) – (~, p~o) (15)

which must be stationary in the sense that

.. 8F(~, ~)=0. (16)

A:= ~“~;~;(X, y) (17)

where the expansion functions’ { cp,} and {p;} should be

linearly independent and form a complete set of functions.

Additionally, the expansion functions must fulfill sep-

arately the adjoint essential boundary conditions. The coef-

ficients a, and a; can be determined by carrying out the

first variation of (16)

(18a)

forallk,l =1,2,3, . . . . (18b)

As can be seen, the determination of the coefficients a,, a;

from (18) is identical to the requirement that

(Q&z, L(Az~z)-@o)=o (19a)

This means that the coefficients ai are chosen in such a

way that L ( AZZZ) – pSo is orthogonal to the expansion

functions rp~~z and the coefficients a; are chosen so that

L“(A:ZZ) – p~o is orthogonal to PIF,. Sarkar [19] has shown

that this property can lead to numerical difficulties in the

solution process.

In the special case considered here, the boundary condi-
tions for the original and the adjoint problem (A,, = O, A:

= O) are identical; therefore, it is possible to make use of

Galerkin’s method, i.e., rpi = rp;.

It is convenient for the series expansion to separate the

vector potentials into their real and imaginary parts, re-

spectively

Without any restrictions, the real and imaginary parts of

the expansion functions can be chosen to be equal. Intro-

ducing (20) into (18) under the mentioned assumptions,

after some lengthy mathematics, it can be shown that the

resulting equation systems can be written in the form

(rotA3’, rot8A7’)~ + q.LK(Ai, 8A:’)QK= O (22)
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Fig. 3. The physical arrangement of an infinite number of rectangular

conductors and their currents which must be considered to verify the

boundary condition A== O on C.

which means that (18a) and (18b) lead to one and the same

equation system for the vector potential A- according to

(20).

If the coefficients j3i and yi are determined, the current

density ~ can be found from

(23)

where ( – jcokA+) is the eddy current density which is

superimposed to the homogeneous distributed current den-

sity so. The alternating current resistance R normalized to

the dc current resistance R ~ is given by

Some additional aspects of the boundary condition A== O

as it was assumed above shall be given shortly. As it was

pointed out before, the condition A== O can be interpreted

in the way that the boundary curve C is a magnet flux line.

Physically, this can be realized by an infinite arrangement

of rectangular conductors with positive and negative cur-

rent densities as shown in Fig. ,3. Using this method of

images, the calculation of eddy current problems in cou-

pled line structures can also be carried out. Depending on

the orientation and the position of the image currents,

different boundary conditions can be treated; so, for exam-

ple, the additional influence of the proximity effect can

also be calculated.

In some problems, it is possible to make a meaningful

assumption on the distribution of the tangential magnetic

field in the exterior boundary C. In this case, the inhomo-

geneous Neumann boundary conditions apply, and the

final system equation for calculating the expansion coeffi-

cients can be written as

(rot2’,rot&l’)~ + q.LK(Z, fil)ac= O (25)

where B = ~‘ is assumed to be real on the boundary C. In

contrast to the case of the essential boundary conditions

(A= = O), the expansion functions are unrestricted on the

exterior boundary C here.

B. The Variational Method Using Two Vector Potentials

As shown in Fig. 1, the cross section of the cylindrical

field problem can be subdivided into a conducting and a

nonconducting field region. In Section III-A, only one

series expansion was used for describing the vector poten-

tial in both field regions. If the ratio fl~/0~ is small, this

method may be disadvantageous because the number of

expansion coefficients which are needed to find an ap~

proximate solution of the infinite system equation (e.g.,

(21) and (22)) becomes large. Alternatively, two different

series expansions can be used for the vector potential in the

areas O. and .O~. This method leads to a system equation

similar to (25), where the surface integral over the inner

boundary C. must be used to fulfill the continuity condi-

tion of the magnetic field in this boundary

(rot~~,rot8~’)~K– @pK(~~, @K)~K

- [i32fi Xrot2., ii.] ~x = (~io, 81.)

(rot~;,rotr$~fi)~~+ @pK(~K, ~~~)o.

- [8~. xrot~~, i.] ~ = O - (26)K

and

[81. X rot~, fi.]cK+(rot~,rot81.)o~

=[a2Ax3’(c), ii]c

[82. xrot~, ii. K] c + (rot ~’,rot d~’),~ = O (27)

where+A-~ is the vector potential in the conducting area fl~

and AA is the vector potential in il~. For both vector

potentials, series expansions equivalent to (20), and consid-

ering the requirements of Galerkin’s method are defined,

the coupling integrals over the interface C. guarantee that

the continuity condition for the tangential magnetic field is

fulfilled so that dA-/dn is continuous. Additionally, the

essential continuity condition for A-itself must be fulfilled

explicit ly by a proper choice of the series expansion. In

(27), both kinds of the boundary conditions on the exterior

curve C are considered simultaneously. In the case of the

essential boundary condition (A= = O), 8A7ti is zero on C;

therefore, the surface integral vanishes, whereas in the case-

of the natural boundary condition, \he surface integral

introduces the prescribed value of Btm on C into the

equation system.

C. The Variational Method Using the Magnetic Flux and

the Magnetic Vector Potential

Using the method described in Section III-B, it may

sometimes become difficult to fulfill the essential continu-

ity condition for A-explicitly. In this case, a third method,

which shall be described below, may be helpful. Instead of

using the magnetic vector potential in the-area !il~ as in the
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area ~~, the magnetic flux ~ is used to describe the fields

in Q.; the fields in ~~ again are derived from the vector

potential. The field equations in the two areas therefore are

rotrot Z + jupfc~ = O in fil.

rotrot A-= O in ti~. (28)

Using the way of derivation which principally has been

explained in Section III-A, the equation systems in O. and

QA take the form

(rot Z’,rot ~~’)~x- 6wK~B”, 8B’)QC

-[8~’Xrotj’, ii~]c =0.

(rot ~“,rot 8~’)ax+ CJpK(~’, 8~’)ac

- [~~’ xrot ~“, z.] ~ = O (29).

in S?. and on CK and

(rot l’,rot &?)a~ + [8A; Xrot A+’, iii] CK

-[&i? Xrot Z,ii]c=O

(rot z’,rot &i?)~~ + [8Z X rot 1, ii.] CK

-[t3ZXrot1’’, fi]c=0 (30)

in QA and on CN as well as on C.

Because, in (29) and (30), the set up for the magnetic

flux density in fl~ and the magnetic vector potential in ~ti

are still independent of each other, the continuity condi-

tion on Cw must be used to determine the necessary cou-

pling between these two fields. Using the continuity of the

tangential magnetic-field strength and the continuity of the

vector potential, the following equation system can be

derived:

(rot $’,rot~i’)a=– cdpK(i”, 8i’)QG

- [8 BX6+J’’,Z.]CK= [t@ ’xp&, iiK]cK

(rot ~“,rot~~’)ax+ cJpK(i’, 8Z’)aK

+ [m’x tqwc,z.]cx =0 (31)

in $?. and on Cw, and

(rot I,rot 8Z)o~ + [t3i X ~’, i?.] ~K

=[ibi’xz(c), jqc

(rot A+’’, rot&l+’)~~ + [&l+’ X B“, ii. ] ~ = O. (32)

in fl~ as well as on C. and C.

Depending on the applied boundary condition, the

surface integral over C vanishes (A= = O) or introduces the

value of the tangential magnetic flux on C into the prob-

lem.

IV. FIRST NWMERICAL RESULTS AND DISCUSSION

OF THE METHOD

First numerical results for the problem of the rectangu-

lar conductor shown in Fig. 2 are available and shall be

discussed here. In all computations, the essential boundary

condition (A= = O) as it has been described above has been

used.. One part of the results presented here has been

derived using the method described in Section III-A; for
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Fig. 4. The measured alternating current resistance R normalized to the
dc resistance R. ([5], solid lines) in dependence on the normalized

frequency p = ~- and numerical resrdts of the method described

in Section III-A. (Shape ratio SR :.SR =1, ❑ SR = 2, 0 SR = 4, A SR

=6) and in Section III-B (Shape ratio SR: x SR = 6)

the shape factor w/t = 6 (Fig. 4) the method in Section

III-B has been used additionally; the results of the two

methods will be compared. Depending on the structure of

the conductor and the surrounding area, the application of

one or the other method may give a higher flexibility in the

formulation of the expansion functions and may thereby

be advantageous.

Using the method described in Section III-A, the vector

potential A- is expanded into a series of trigonometric

functions

A;= f f a,,cos[(2i -l)~]cos[(2j-1)~]
1=1 J=l

xl;= ~ ~ bZ,cos[(2i -l)~]cos[(2j-1)~]
~=1,=1

(33)

where NX and NY are the highest values which are consid-

ered in the numerical evaluation. The expansion functions

used in (33) form a complete set as NX, NY approach

infinity (entire basis functions), they are orthogonal in L!

and each element of the function system is zero on the

boundary C as it is required by the essential boundary

condition.
Formulating the equation system (22) with the expansion

function (33), a i? x N system matrix results where N =

2NXNY. Using the orthogonality of the expansion func-

tions, it can be shown that the matrix can be split up into

two frequency-dependent diagonal submatrices and two

frequency-independent full submatrices, so that the equa-

tion system can be rearranged reducing the matrix size b y a

factor 4. Because of the special form of the system matrix,

only the main diagonal elements of the resulting matrix

change with the frequency, so that in the calculations at

different frequencies only few elements of the matrix must

be recalculated.

For the special problem shown in Fig. 2, up to 20

elements ( NX, NY) of the series expansions have been used
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corresponding to a 400X400 matrix. The resulting CPU

time for solving the problem at one frequency on a CDC

7600 is about 60 s; after one computation in which the

matrix is generated once, the CPU time reduces to about

10 s for each further frequency point. The 20 elements of

the series expansions are needed because the exterior curve

C must be sufficiently far away from the inner boundary

C. to avoid an influence of the exterior boundary C on the

current distribution inside the conductor. Best results were

obtained using a quadratic exterior boundary C with a = b,

where a and b are at least three times larger thag the larger

value of w or t.

In Fig. 4, the measured ~ternating current resistances

published by Haefner [5] are shown as a function of the

normalized frequency p

p+i={m (34)

where A. is the cross-section area of the conductor. The

use of the normalized frequency is helpful in so far as it

allows one to compare the resistances of conductors with

the same shape ratio as it is required by the principle of

similitude. As can be seen from the table in Fig. 4, the

p-values interesting for application in microwave mono-

lithic integrated circuits are between 0.6 and about 30. For

the high values (p ~ 8-10), Wheeler’s [1] or Cockcroft’s [4]

theory are quite good approximations, as can be seen from

Fig. 4 (dashed curves). Especially for high values of the

shape ratio and small values of p, the differences between

the approximate theories and the measurements become

large because these approximations describe the alternating

current resistance as linearly dependent on the normalized

frequency p; therefore, the dashed straight lines are always

beginning in the origin of the coordinate system (i.e., R = O

for p = O).

Fig. 4 also shows the first numerical results computed by

the described method. For all shape ratios and small values

of the normalized frequency p ( ps 5), the agreement be-

tween the theoretically computed values and Haefner’s

experimental data is quite good. The same is true for shape

ratios between 1 and 2 (i.e., nearly quadratic conductors)

up to frequencies p =10 (which is the highest value for

which computations have been done up to now). Because

the quadratic conductor is the one in which the two-dimen-

sional current displacement is most marked, the good

agreement in this case is considered a confirmation of the

theoretical method. The disagreement between Haefner’s

measurements and the computed results for the shape ratio

w/t = 6 and for higher p-values may be a result of insuffi-

ciently high cuts in the series expansions; higher values

than NX = ~Y = 20 could not yet be achieved on the

formerly awulable computer.
Additionally, the method described in Section III-B has

been applied; the results for the shape factors w/t =1 and

2 do not differ from those computed -with the method in

Section III-A. In the case of the shape factor w/t= 6, the

method in Section III-B gives a better possibility y to com-

pute the resistances as can be expected by the small ratio

flg /f2~. As can be seen from Fig, 4, the results calculated

with the method in Section III-B agree well with Haefner’s

measurement, and for high frequencies

Cockcroft’s approximation is verified.

V. SUmRY
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(high p-values),

As a result, it can be pointed out that for the first time

the measurements published by Haefner [5] for the alter-

nating current resistance of the rectangular bar have been

verified by a numerical calculation method for the skin-

effect in a large frequency range. For very high frequencies,

it is shown that Cockcroft’s approximate formulas can be

applied.
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