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Abstract —During the last years, monolithic integrated circuits have
been used more and more in microwave techniques. As a result, the
metallization thickness of the planar circuits became of the order of the
skin depth even at very high frequencies, so that the approximate methods
for loss calculations used until recently must be revised. In this paper, a
variational formulation of the skin-effect problem for calculating the losses
as well as the inner inductances of components in such circuits will be
described, and the first numerical results of the method will be discussed.

I. INTRODUCTION

N PLANAR MICROWAVE integrated circuits, the used

line structures are striplines of rectangular cross section.
The thickness of the metallization is between 5 and 20 pm
in hybrid microwave integrated circuits and between 1 and
3 pm in monolithic microwave integrated circuits. Two
different cases are interesting in real monolithic microwave
integrated circuits

1) the lumped-element circuit, where the losses of a
single conducting strip of rectangular cross section
with no metallization on the backside of the sub-
strate material must be calculated, and

2) the microstrip circuit, where the losses in the strip as
well as in the ground plane must be calculated.

If it is assumed that the comductivity of the conductor
material is in the order of 4-107 S/m, the skin depth of
this material is about 3 pm at a frequency of 1 GHz and
about 0.6 pm at a frequency of 20 GHz. Assuming that the
height of the strips is between 1 and 3 pm, the current
distribution is nearly constant over the cross section at the
lower frequency (1 GHz), whereas, at 20 GHz, the skin-
effect already has an important influence on the current
distribution and thereby on the resistance of the strip.

" “This is the reason why in this paper the fundamental
problem of the skin-effect in a conductor of rectangular
cross section is considered again. Up to now, the loss
calculations for high frequencies have been primarily based
on the essential paper by Wheeler [1] in which an ap-
proximate method for calculating the frequency-dependent
alternating current resistance of a conductor with dimen-
sions large compared to the skin depth has been described
(incremental inductance rule). In the case of thin-film lines
as they are used in hybrid microwave integrated circuits,
the requirements of Wheeler’s theory are approximately
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fulfilled even at lower microwave frequencies because the
metallization thickness of these circuits is between 5 and 10
pm. As has been shown above, in the case of monolithic
microwave integrated circuits, and especially at lower fre-
quencies, Wheeler’s theory no longer can be applied be-
cause the skin depth is in the order of the metallization
thickness.

In this first fundamental investigation, only the skin-
effect in a single strip of rectangular cross section is
considered. Using the results of this theory, the losses of
lumped elements can be calculated directly. In addition, if
the theory shall be applied to microstrip circuits, the mag-
netic-field distribution on the surface of the conducting
areas or on a closed surface including the conducting
structures must be known from other numerical methods.
Investigations for this case will be published in the future.

The problem of the skin-effect in rectangular conductors
is a very old one; one of the first papers dealing with the
subject is that of Press (1916) {3]. In 1929, Cockcroft [4]
published an approximate formula for the alternating cur-
rent resistance of a rectangular conductor at high frequen-
cies which he derived from an electrostatic analog of the
problem. The requirements for the application of this
formula are nearly the same as those for Wheeler’s theory,
i.e., both theories are applicable in a frequency range where
the alternating current resistance is nearly proportional to
the square-root of the frequency. In 1937, Haefner [5]
published measured results for the frequency-dependent
resistance of a rectangular conductor, which up to now are
the only available measurements for resistances of different
shape ratios and frequencies.

Already by 1927, Schwenkhagen [6] published an exten-
sive investigation on a quasi-numerical method for the
problem. This investigation was carried out for application
in electrical power transmission, but it describes the same
problems as those occurring in microwave integrated cir-
cuits today, especially the problem of the skin-effect resis-
tance of coupled lines. During the following years, there
had been a number of publications on numerical methods
for calculating the alternating current resistance of a rect-
angular conductor [7]-[15]. The last publication was pub-
lished in 1983, which showed that apparently the problem
up until then had not been solved satisfactorily. In all -
papers, only few results of the numerical methods are
presented; only Silvester [10] and Preis [14] give some
detailed information on the frequency-dependent resis-
tance; especially, all authors only give results for frequen-
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Fig. 1. The general cylindrical boundary-value problem.

cies which are relatively small, and the frequencies which
are interesting for microwave applications (i.e., normalized
frequencies p between p =2 and p = 30; for the definition
of p, see below) are not investigated. The highest value
considered in the publications is p = 6. Additionally, little
information is available in publications on the numerical
effort, which in most cases is considered to be high.

In this paper, therefore, a numerical method based on a
variational formulation of the problem will be described.
In this first approach, only the single conducting strip of
rectangular cross section without any substrate material
and ground plane will be considered, i.e., the application of
the method for calculating the losses of the microstrip lines
will not be discussed. Already by 1978, Hammond [16],
[17] remarked that the variational methods principally
should be applicable to eddy current problems, and he
verified this method for one-dimensional problems. Chun
Hsiung Chen ef al., in 1980, published a general investiga-
tion on the application of variational methods in non-self-
adjoint electromagnetic problems [18], and Sarkar [19], in
1984, gave interesting information on this subject and the
inherent numerical difficulties. The author’s paper is based
on the referenced publications and tries to further develop
the theoretical background and its application.

II. VARIATIONAL APPROACH FOR THE SKIN-EFFECT

Because, in this paper, the investigation will be restricted
to a single conducting strip of rectangular cross section, the
quasi-stationary electromagnetic boundary-value problem
shown in Fig. 1 is considered; it consists of a cylindrical
arrangement with homogeneous cross section along the
cylinder axis. The field domain £ is subdivided into two
sub-areas: §, is a domain described by a conductivity «
and a permeability p = p,, whereas @, is air-filled, i.e., the
material parameter of this domain is p=p, All field
regions are assumed to be homogeneous, i.e., all material
parameters shall be constant in the sub-areas. The boundary
curve C, surrounds the conducting area, and C is the
boundary curve of the total field region . Two different
kinds of boundary conditions on the exterior curve C will
be discussed later in this paper.

It is assumed that the electromagnetic field is indepen-
dent of the z-coordinate (Fig. 1, cylinder axis); a current
density in- the conducting area shall exhibit only a :z-
component. Therefore, the adjoint magnetic field B is
purely transversal and the electric field E as well as the
vector potential 4 have only a z-component.
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Under these conditions, Maxwell’s equations describing
the problem can be written as

rot B = uS, — jwukd, divB=0 (1)
rot A= B, divA=0 (2)

where S‘;, is an impressed current density, which is assumed
to be homogeneously distributed over the cross section of
the area Q.. S, at the same time is the current density
which will occur in the conducting area in the case w — 0,
The special form of (1) results from a Lorentz-gauge of the
vector potential A.

Using (1) and (2), it can easily be shown that the
governing equation for the vector potential in the whole
field domain € =Q,_+§, is

rotrot A + jopxd = p.§o in Q.

3)
This is the operator equation '

with the operator

L =rotrot+ jwpk

(5)
which will be used in the variational formulation of the
problem later.

If the different field regions {2, and {2, are considered
separately, the following equations are valid for 4 and B:

(6)

rotrot A + jwux/f= y§0 O

o - in Q,
rotrotB + jouxkB =0

and

rotrotA =0

(7)
The solution of (4) or (6) and (7) needs the definition of the
above-mentioned boundary condition on the curve C, which
is the assumed outer boundary of the total field region. In
a first case, a homogeneous Dirichlet boundary condition
(A,=10), and in a second case, an inhomogeneous
Neumann condition (d4,/dn = B,(C)) will be assumed.
The first boundary condition A, = 0 implies that the exte-
rior curve C is a field-line of the magnetic field B. The
second boundary condition can be applied if a meaningful
assumption on the value of the tangential magnetic
flux-density B,(C) on the curve C can be made.

The operator L given in (5) is non-self-adjoint

(@, L5y + ( Lii, ) (8)

where #, U are vectors in the domain of the operator L.
The scalar product in (8) is defined as

(@.7) = [[w5aQ
Q

in Q.

©)

" where  is the considered field region.

As it is known from [18] in the case of the non-self-
adjoint problem given in (4), an adjoint operator L® can be
defined so that

(i, L) = (L4, 5. (10)

The form of the adjoint operator L¢ and the general
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Fig. 2. The conducting cylinder of rectangular cross section (region £,
boundary C,) and the exterior boundary C.

procedure of solving the skin-effect problem of the rectan-
gular conductor shall be explained for a special example in
the next chapter.

III. THE SKIN-EFFECT OF A CONDUCTOR WITH

RECTANGULAR CROSS SECTION

A. The Variational Method Using One Vector Potential

In this section, the problem in Fig. 2 shall be analyzed
using the described method. On the exterior boundary C,
the homogeneous Dirichlet condition (A4, =0) shall be
assumed. The operator equation (4) (with the operator
given in (5)), which shall be solved, is valid in the total field
region { surrounded by C. The adjoint operator L? can be
derived in this case as

Lé= (11)
where L* means the conjugate complex of L (see also

[17]). Additionally, the adjoint vector potential A, which
fulfills

= rotrot — jopk

L°4% =S, (12)
(where the impressed adjoint current density S0 can be
chosen to be S§ = S, without any restrictions) must satisfy
the same homogeneous boundary conditions as A, so that
the “surface integrals” appearmg when Green’s formula 1s
applied to (i, Lu) and using (11)

(i, LTy = (L4, 0y + [0 Xroti*, #] - [4d* Xrot¥, 7|

(13)

automatically become zero. The surface integrals in (13)
are defined as

[B X rotit*, 7] = ¢(a><mta*)-ﬁds. (14)
C
In addition, the surface integrals must be taken into account
if not the essential boundary condition 4,=0, but the
natural conditions, e.g., the inhomogeneous Neumann con-
dition, are considered.
Following [20] and [18] in the case of the homogeneous
boundary condition, a solution for the field vectors 4 and
A“ can be derived from the functional

F(A, A*) = (A%, LAy~ (uSy, Ay~ (4, pS;) (15)
which must be stationary in the sense that

8F(4, 4%)=0. (16)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985

To find a solution for the vector potentials 4 and A%, use
is made of a series expansion

= i a,9,(x,y)

=1

[¢ o]
= ) alpi(x, y) (17)
J=1
where the expansion functions {¢,} and {7} should be
linearly independent and form a complete set of functions.
Additionally, the expansion functions must fulfill sep-
arately the adjoint essential boundary conditions. The coef-
ficients «, and a’ can be determined by carrying out the

first variation of (16)

IF &

7oz = & (912, L(9Z) (9., 85) = 0
=1
(18a)
aF - a - a az — o
aal = Z aj<(p[ez7 L ((Pjez)> —<(plez7 IU’S0> = O’
J=1
forall k,/=1,2,3,---. (18b)

As can be seen, the determination of the coefficients a,, af
from (18) is identical to the requirement that

(pse,, L(A,2,)—pSy) =0 (192)

(€, L(4z,) - ﬂS0> 0. (19b)
This means that the coefficients a; are chosen i in such a
way that L(A e,)— p,So is orthogonal to the expansion
functions ¢fe, and the coefficients af are chosen so that
Le(A% )~ ,u§ is orthogonal to ¢,€,. Sarkar [19] has shown
that this property can lead to numerlcal difficulties in the
solution process.

In the special case considered here, the boundary condi-
tions for the original and the adjoint problem (4, =0, 42
= 0) are identical; therefore, it is possible to make use of
Galerkin’s method, i.e., ¢, = ¢%.

It is convenient for the series expansion to separate the
vector potentials into their real and imaginary parts, re-
spectively

= X Bei(x, y)+ji Yy,

1=1 1=1

o0
A?=Y Blo)(x, )+ Z R ACIDN
J=1 J=

¢/ (x,y)
(20)

Without any restrictions, the real and imaginary parts of
the expansion functions can be chosen to be equal. Intro-
ducing (20) into (18) under the mentioned assumptions,
after some lengthy mathematics, it can be shown that the
resulting equation systems can be written in the form

(rot A7, rot8A" g — wpk( A", 84"y = n(Sy, 847,

(rot A7, 10t84" yg, + wpk (A, 81<P>QK= 0 (21)

and

(rot &', 10t8 4" g — wun( A", 847 yg = 1(Sy, 847yq,

(ot A", 10t8A” g + wpr{ A, 84"y =0 (22)
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Fig. 3. The physical arrangement of an infinite number of rectangular
conductors and their currents which must be considered to verify the
boundary condition A, =0 on C.

which means that (18a) and (18b) lead to one and the same
equation system for the vector potential A according to
(20).

If the coefficients B; and v, are determined, the current
density S can be found from

where (— jwikA) is the eddy current density which is
superimposed to the homogeneous distributed current den-

sity SO The alternating current resistance R normalized to
the dc current resistance R, is given by

f/|§0— jwkAl?dS
— = 4wt &
§0—ijidﬂ
Q"

jwn/f

- (24)

Some additional aspects of the boundary condition 4, =0
as it was assumed above shall be given shortly. As it was
pointed out before, the condition 4, = 0 can be interpreted
in the way that the boundary curve C is a magnet flux line.
Physically, this can be realized by an infinite arrangement
of rectangular conductors with positive and negative cur-
rent densities as shown in Fig. 3. Using this method of
images, the calculation of eddy current problems in cou-
pled line structures can also be carried out. Depending on
the orientation and the position of the image currents,
different boundary conditions can be treated; so, for exam-
ple, the additional influence of the proximity effect can
also be calculated.

In some problems, it is possible to make a meaningful
assumption on the distribution of the tangential magnetic
field in the exterior boundary C. In this case, the inhomo-
gencous Neumann boundary conditions apply, and the
final system equation for calculating the expansion coeffi-
cients can be written as

(rotd",10t84"yg — wp(A”,84")g
= (uSp, 84"Yq,+[84' < B(C), 7]
(rot A, 10t8A4")g + wpk{ A, 847y =0 (25)
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where B = B’ is assumed to be real on the boundary C. In
contrast to the case of the essential boundary conditions
(A, =0), the expansion functions are unrestricted on the
exterior boundary C here.

B.  The Variational Method Using Two Vector Potentials

As shown in Fig. 1, the cross section of the cylindrical
field problem can be subdivided into a conducting and a
nonconducting field region. In Section III-A, only one
series expansion was used for describing the vector poten-
tial in both field regions. If the ratio @, /Q, is small, this
method may be disadvantageous because the number of
expansion coefficients which are needed to find an ap-
proximate solution of the infinite system equation (e.g.,
(21) and (22)) becomes large. Alternatively, two different
series expansions can be used for the vector potential in the
areas £, and £, This method leads to a system equation
similar to (25), Where the surface integral over the inner
boundary C, must be used to fulfill the continuity condi-
tion of the magnetic field in this boundary

(rotA’,,rot8 A4, e~ wuk(A”, 84, ey

— [84%, xrot A%y, 7i, | . = (pSy, 84L)

(rot A, ro’t&A’)s2 + wpr( A, 84 e,

—[847, xrot A%, 7, ] o =0 - (26)

and

84", X rot A, ii c + rot/f’,rotSXg Q
A K k]l Cy A 4

= [84, x B'(C), 7] .

(847 xrot A7, 7, c. + (rot A%, rot 84 ‘e, =0 (27)

where _{4_; is the vector potential in the conducting area Q,
and A, is the vector potential in Q,. For both vector
potentials, series expansions equivalent to (20), and consid-
ering the requirements of Galerkin’s method are defined,
the coupling integrals over the interface C, guarantee that
the continuity condition for the tangential magnetic field is
fulfilled so that 34, /9n is continuous. Additionally, the
essential continuity condition for A itself must be fulfilled
explicitly by a proper choice of the series expansion. In
(27), both kinds of the boundary conditions on the exterior
curve C are considered simultaneously. In the case of the
essential boundary condition (4, = 0), 84’ 'y is zero on C;

therefore, the surface integral vanishes, whereas in the case
of the natural boundary condition, the surface integral
introduces the prescribed value of Btan on C into the
equation system.

C.  The Variational Method Using the Magnetic Flux and
the Magnetic Vector Potential

Using the method described in Section III-B, it may
sometimes become difficult to fulfill the essential continu-
ity condition for A explicitly. In this case, a third method,
which shall be described below, may be helpful. Instead of
using the magnetic vector potential in the area Q, as in the
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area Q, the magnetic flux B is used to describe the fields
in Q,; the fields in Q, again are derived from the vector

potential. The field equations in the two areas therefore are

rotrot B + jw,uxﬁ =0 in £,
rotrot 4 =0 (28)
Using the way of derivation which principally has been
explained in Section III-A, the equation systems in £, and

Q, take the form
(rot B’,rot 8§’>QK ~ wpk(B”, 8§'>9&

in &,.

—[8B’Xrot B', i ] o =0
(rot B”,rot 8§’>ﬂx+ wur(B’, 81§’>Q‘
—[6B’ xr10t B”, 7 ] c.=0 (29)
in £, and on C, and
(rot 4,10t 84"y +[84" Xrot A, 7, | ¢,
—[84" xrot 4, 7] =0
(rot A", rot 8A_">QA + [b‘/f’ Xrot A7, 1‘1’“] C.
—[84" xrot 4”7, 7] =0 (30)

in £, and on C, as well as on C.

Because, in (29) and (30), the set up for the magnetic
flux density in 2, and the magnetic vector potential in Q,
are still independent of each other, the continuity condi-
tion on C, must be used to determine the necessary cou-
pling between these two fields. Using the continuity of the
tangential magnetic-field strength and the continuity of the
vector potential, the following equation system can be
derived:

(rot B’,10t8B" ) — wux(B",8B" g
8B X ek d” i = [8B X uSy, 7] .

{rot ﬁ”,rot8§’>9K+ w;m(ﬁ’, 8§’)QK
+ [BE’ X wprd’, FiN] e.=0 (31)

in @ and on C,, and

(rot 4, 1ot 814T’>QA + [8ff’ X B, ﬁ,c] c.
=[84"x B'(C), 7] .
(rot A”,10t34"yg + [64'% B i ] =0 (32)

in 2, as well as on C, and C.
Depending on the applied boundary condition, the

surface integral over C vanishes (A4, = 0) or introduces the -

value of the tangential magnetic flux on C into the prob-
lem.

IV. FIrRsT NUMERICAL RESULTS AND DISCUSSION
OF THE METHOD

First numerical results for the problem of the rectangu-
lar conductor shown in Fig. 2 are available and shall be
discussed here. In all computations, the essential boundary
condition (A4, = 0) as it has been described above has been
used.. One part of the results presented here has been
derived using the method described in Section III-A; for
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Fig. 4. The measured alternating current resistance R normalized to the
dc resistance R, ([5], solid lines) in dependence on the normalized

frequency p =+/2fxp A, and numerical results of the method described
in Section III-A. (Shape ratio SR:@SR=1, 0SR=2, OSR=4, aSR
=6) and in Section III-B (Shape ratio SR: x SR =6)

the shape factor w/t =6 (Fig. 4) the method in Section
III-B has been used additionally; the results of the two
methods will be compared. Depending on the structure of
the conductor and the surrounding area, the application of
one or the other method may give a higher flexibility in the
formulation of the expansion functions and may thereby
be advantageous.

Using the method described in Section III-A, the vector
potential A is expanded into a series of trigonometric
functions )

N, N,

. 1) X 1\
A= z§1 ,§1a’j cos [(21 1) 32 ]cos [(2] 1) 75 ]
Nx Ny
" 1) 1\
Al z§1 ,§1 b, ,cos [(21 1) 32 ]cos [(2] 1) 7 ]

(33)
where N, and N, are the highest values which are consid-
ered in the numerical evaluation. The expansion functions
used in (33) form a complete set as N,, N, approach
infinity (entire basis functions), they are orthogonal in £
and each element of the function system is zero on the
boundary C as it is required by the essential boundary
condition.

Formulating the equation system (22) with the expansion
function (33), a N X N system matrix results where N =
2N.N,. Using the orthogonality of the expansion func-
tions, it can be shown that the matrix can be split up into
two frequency-dependent diagonal submatrices and two
frequency-independent full submatrices, so that the equa-
tion system can be rearranged reducing the matrix size by a
factor 4. Because of the special form of the system matrix,
only the main diagonal elements of the resulting matrix
change with the frequency, so that in the calculations at
different frequencies only few elements of the matrix must
be recalculated.

For the special problem shown in Fig. 2, up to 20
elements (N,, N,) of the series expansions have been used
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corresponding to a 400X 400 matrix. The resulting CPU
time for solving the problem at one frequency on a CDC
7600 is about 60 s; after one computation in which the
matrix is generated once, the CPU time reduces to about
10 s for each further frequency point. The 20 elements of
the series expansions are needed because the exterior curve
C must be sufficiently far away from the inner boundary
C, to avoid an influence of the exterior boundary C on the
current distribution inside the conductor. Best results were
obtained using a quadratic exterior boundary C with a = b,
where a and b are at least three times larger than the larger
value of w or .

In Fig. 4, the measured alternating current resistances
published by Haefner [5] are shown as a function of the
normalized frequency p

p=\2fxp(dwt) = 2fxpd,

(34)

where A, is the cross-section area of the conductor. The
use of the normalized frequency is helpful in so far as it
allows one to compare the resistances of conductors with
the same shape ratio as it is required by the principle of
similitude. As can be seen from the table in Fig. 4, the
p-values interesting for application in microwave mono-
lithic integrated circuits are between 0.6 and about 30. For
the high values ( p > 8-10), Wheeler’s [1] or Cockcroft’s [4]
theory are quite good approximations, as can be seen from
Fig. 4 (dashed curves). Especially for high values of the
shape ratio and small values of p, the differences between
the approximate theories and the measurements become
large because these approximations describe the alternating
current resistance as linearly dependent on the normalized
frequency p; therefore, the dashed straight lines are always
beginning in the origin of the coordinate system (i.e., R =0
for p=0).

Fig. 4 also shows the first numerical results computed by
the described method. For all shape ratios and small values
of the normalized frequency p(p < 95), the agreement be-
tween the theoretically computed values and Haefner’s
experimental data is quite good. The same is true for shape
ratios between 1 and 2 (i.e., nearly quadratic conductors)
up to frequencies p =10 (which is the highest value for
which computations have been done up to now). Because
the quadratic conductor is the one in which the two-dimen-
sional current displacement is most marked, the good
agreement in this case is considered a confirmation of the
theoretical method. The disagreement between Haefner’s
measurements and the computed results for the shape ratio
w/t =6 and for higher p-values may be a result of insuffi-
ciently high cuts in the series expansions; higher values
than N, =N, =20 could not yet be achieved on the
formerly available computer.

Additionally, the method described in Section I1I-B has
been applied; the results for the shape factors w/r =1 and
2 do not differ from those computed -with the method in
Section III-A. In the case of the shape factor w/r = 6, the
method in Section III-B gives a better possibility to com-
pute the resistances as can be expected by the small ratio
Q,./8,. As can be seen from Fig, 4, the results calculated
with the method in Section III-B agree well with Haefner’s

1081

measurement, and for high frequencies (high p-values),
Cockcroft’s approximation is verified.

V. SuMMARY

As a result, it can be pointed out that for the first time
the measurements published by Haefner [5] for the alter-
nating current resistance of the rectangular bar have been
verified by a numerical calculation method for the skin-
effect in a large frequency range. For very high frequencies,
it is shown that Cockcroft’s approximate formulas can be
applied.
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